
© Coverity 2009

The Business Case for Static
Analysis

Ilya Dreytser
Software Engineer, Technical Account Manager

Agenda

• Building Security into the SDLC

• Where do Static Analysis Tools Fit in

• Evaluating Static Analysis

• Measuring the ROI of Static Analysis tools

• Adopting Static Analysis – How to do it right

• Case Studies

Build Security into the SDLC

• “The software development group is dealing with
application security since they are building the
applications. I just need to worry about other aspects of
security.”

• “The security group is dealing with security of our
applications since they are the experts.”

The reality is that both are required!
Source: The Seven Deadly Myths of Software Security

4
ALL

Dual Perspectives on Security

Security Auditors Developers

Goal
Find all potential security

issues; Assess risk to
applications & application

infrastructure

Deliver software that meets
customers needs with a

minimal risk of failure

Strategy
Flag all security violations and

potential violations; make
sure nothing slips through

Prioritize and resolve security-
related issues based on

severity, available resources,
and schedule

Challeng
e

Leverage tools to analyze
complex applications and

complex operating
environments

Build security into all phases of
the development process at

minimal incremental cost

Build Security into the SDLC

• What do you mean?

• Security can not be an afterthought – it must be built
into the SDLC

• Why is that?

• Reducing software defects (including security flaws)
throughout the SDLC provides significant cost benefits

Ok, how do we do that?

Build Security into the SDLC

DESIGN

CODE

TEST

DEPLOY

Where does Static Analysis Fit in?

How do Static Analysis Tools Fit in?

• Treat Security Vulnerabilities as Software Defects

• Why?
• Developers understand defects

• Developers work with the Bug Tracking System

• Developers are the ones that write (and make changes to)
the source code

• So what do Static Analysis tools provide us with?

Potential Defects!

What kinds of Static Analysis Tools are there?

Coding-Style Checkers

Defect Detection Analysis Tools

Faster, Better, Cheaper - Pick Two

Find and Fix Rises Later in Development

NIST Study - http://www.nist.gov/director/prog-ofc/report02-3.pdf

Simple Math

Let’s say we have 100 real defects:

• 25 were found during Code/Unit Test
• NIST data shows it takes 3.4 hours per defect in Code/Unit Test

• 50 were found during Integration/Testing
• NIST data shows it takes 7 hours per defect in Integration/Test

• The rest are in the product today. Let’s say 1 of them
causes a Security Failure
• NIST data shows it takes 13.5 hours to find a defect after release

TOTAL: 448.5 hours + 24 defects still in product +
collateral damage

Static Analysis Math

• Let’s say a Static Analysis tool reports 100 potential
defects…

• Q: How long does it take to review 1 defect, determine
root cause, and fix the defect?

• Q: How many False Positives are reported?
• How much time does it take to identify them?

• Is the status persistent?

• Q: How many defects are “significant” or “must be
fixed” as opposed to “low risk” or “no risk” issues?

How to Evaluate Static Analysis

Issue Tool A Tool B
Ability to detect
serious defects

• Null Pointer Dereferences
• Out Of Bounds Array Access

• Uninitialized Variables

• Memory Leaks

• Null Pointer Dereferences
• Out Of Bounds Array Access

• Uninitialized Variables

• Memory Leaks
• Multi-Thread Support

• 64-bit OS Support

False positive
rate

58%
• Identifies 60% of the errors
identified by Tool B but also
reports 2.5 times the total

number of errors

25%

Defects that
are

“worth fixing”

17% Fix Rate 40% Fix Rate

How to Evaluate Static Analysis

Cost Tool A Tool B
Reported
Defects 250 Defects 100 Defects

Inspect Time 10 minutes 10 minutes

Fix Time 50 minutes 50 minutes
False positive

impact
58%

145 False Positives x 10 min

~ 24.1 hours

25%
25 False Positives x 10 min

~ 4.1 hours

Defects that are
“worth fixing”

17% Fix Rate
~18 defects fixed x 1 hours

~ 18 hours

40% Fix Rate
30 defects fixed x 1 hour

30 hours

Defects not
being fixed

~87 defects inspected x 10 min
~ 14.5 hours

45 defects inspected x 10 min
7.5 hours

So what’s the ROI already?

Tool A: 18 defects = 56.6 hours at Code/Unit Test

Manual Inspection: 18 defects = 139.05 hours
• 4.5 defects x 3.4 hours

• 9 defects x 7 hours

• 4.5 defects x 13.5 hours

ROI: 82.45 hours
Tool B: 30 defects = 41.6 hours at Code/Unit Test

Manual Inspection: 30 defects = 231.75 hours
• 7.5 defects x 3.4 hours

• 15 defects x 7 hours

• 7.5 defects x 13.5 hours

ROI: 190.15 hours

Select a Code Base for Evaluation

• Pick a codebase and run the tool.

• The selected code base should be:
• As large as possible

• Actively developed

Review the Results Generated by the Tool

• Review the results.

• Quality not quantity - actionable, relevant defects
• Evidence based defect reports

• Low rate of false positives

• High rate of severe issues leading to fixes

Evaluate East of Adoption

• Find barriers to adoption
• Classification and annotation

• Ownership

• Integration with your SDLC systems
• No changes to existing build system

• Defects can be exported to your Bug Tracking tool

© Coverity 2009

Questions

How to NOT Drive Adoption

To: Developers

From: Management

Dear developers, we purchased a new tool which finds
mistakes that you made. You don’t know how to use it, you
don’t know what exactly it does, and you didn’t participate
in the evaluation or purchase decision.

If you want to use it – you can get it here:

http://intranet.download.new.tool

- Your boss.

Plan the Deployment – Drive Adoption

• Coordinated between metrics group, process group, IT, and
development org managers

• Dev Managers selected a member from each dev team to
install the tool and review the initial set of defects

• Developers are trained

• IT provided central machine for shared Defect Manager
Database

• Process group defined where in the process the tool will fit
in

• Metrics group decided on which metrics to measure to
show ROI

The Big Picture

The Results?

• 4 groups and 20 projects/code bases were up and running
within 4 weeks

• Metrics collection was automated
• Process group modified the process documents to include

running the static analysis tool, and to mandate it prior to
code review

Coverity Customer Case Study

We use Coverity Prevent to realize the following productivity
improvements:

• A savings of approximately thirty (30) percent of
development time that would be consumed
finding/repairing defects,

• Easier defect detection and removal (closer to their point of
introduction),

• Significant defect removal costs savings (that would grow
significantly, if detected later in the development process).

Coverity Customer Case Study

Annual Cost of Defects (Hours)

1,425

273

-

200

400

600

800

1,000

1,200

1,400

1,600

Without Coveri ty With Coveri ty

H

o

u

r

s

Estimated Cost of Defects

Annual Cost of Defects ($)

$77,084

$14,785

$-

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

$70,000

$80,000

$90,000

Without Coveri ty With Coveri ty

D

O

L

L

A

R

S

Estimated Cost of Defects

Coverity Customer Case Study

• Type: Embedded Firmware Product

• Language: C

• Size: ~500 KLOC of proprietary code

• Static Analysis time frame (setup, build, scan, analysis,
rescan, manual review): ~4 weeks

• Real Security Vulnerabilities (confirmed through analysis
of Coverity output and manual code review):

High: 17

Medium: 6

Low: 9

• http://scan.coverity.com

• Over 280 commonly used open source packages

• Over 60 Million LOC analyzed nightly on standard hardware

• Maintainers fixed over 12,000 bugs and security violations to date

DHS Sponsored Open Source Initiative

28

Coverity Scan Project

© Coverity 2009

Questions

